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Abstract

A multivariate method for predicting state of charge, from electrochemical data, of a nickel-metal hydride (NiMH)-battery is
presented. Partial least square (PLS) regression is used to evaluate electrochemical impedance spectra and predict state of charge. The
impedance spectra are analysed in the frequency range 239-0.6 Hz. The impedance is measured for different states of charge at
open-circuit conditions and during continuous discharge at loads ranging between 0.2 C and 0.8 C. When measuring the impedance
during discharge, the AC-current signal is imposed on the DC-current. The predictive capability of the method is tested by a cross
validation procedure and the root mean square error of prediction is 7% when using the outlier identification capability of the
PLS-regresson method. The state of charge is evaluated with a single model, independently of whether the cell is subjected to
open-circuit or polarised conditions. The predictive performance of the present model decreases at state of charge values less than 10%.
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1. Introduction

Steady-state polarisation measurements are generally
used for the determination of the performance and for the
evaluation of kinetic parameters from battery electrodes.
However, considerably more information is available from
a study of the dynamic responses of such systems. In
Electrochemical Impedance Spectroscopy (EIS) a small
sinusoidal signal is used to perturb the electrochemical
system and the response of the system is observed. The
frequency of the signal is varied over a wide range, which
makes it possible to monitor processes in the system with
different time constants. EIS is a standard technique for
investigation of electrochemical systems. However, it has
been utilised to a smaller extent for analysis of the kinetics
of porous electrodes. This is probably due to the greater
difficulty in analysing the experimental results from these
electrodes. The experimental results from simple electrode
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geometry can often be interpreted in the form of ‘equiv-
alent circuits'. This is a less suitable technique for the
analysis of experimental results from porous battery elec-
trodes, since it is difficult to describe the total impedance
of a porous electrode with a simple ‘equivaent circuit’ or
even with an analytical expression. The complexity of the
problem has often led to the use of either lumped models
which neglects the distribution of the reaction and the
double layer charging in the porous structure, or simplified
models which only accounts for some of the phenomenain
the porous electrode.

Electrochemical techniques for the in situ evaluation of
the state of charge (SoC) is of great practical importance
for example during the utilisation of batteries for traction
applications. A number of different methods for determin-
ing SoC, developed to match a particular battery system,
have been suggested. As a general tool, EIS has been
proposed. Most of the work done so far has been directed
to find a linear dependence between some parameters,
determined by ElS-measurement, and SoC. This parameter
may be the impedance or a component in an equivalent
circuit fitted to the experimental data. The major part of
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the investigations have been performed under equilibrium
condition, i.e., no load applied during measurement.

One early attempt to use EIS was determination of SoC
for Zinc—Mercury Oxide primary cells [1]. In this case,
both current—voltage characteristics and EIS were used
with some success, finding a linear relationship for some
of the parameters investigated. Okazaki et al. [2] used the
second order harmonic of the impedance, a a single
frequency, determining SoC for a lead—acid battery with
an error less than 15%. So far, little work has been done to
find a suitable way of determining SoC in the NiMH-bat-
tery. Qualitative studies of the change of impedance as a
function of SoC and ageing was conducted by Reid [3,4].
However, no attempt was made to evaluate the possibility
of using EIS as a state-of-charge indicator. The ageing
effect upon the NiMH battery has also been studied by
Smith et a. [5]. The need for determination of SoC, with
an applied load was recognised by Blanchard [6]. A Ni—Cd
battery was investigated at open circuit conditions and at
constant discharge loads in the range 0—1 C. Theimpedance
modulus was measured at a single frequency.

Equivalent circuits have also frequently been used. Reid
studied the change in different parameters of a fitted
equivalent circuit, for a Ni—Cd battery, as a function of
SoC and cycle life [7]. It was however, difficult to draw
any conclusions as for the possibility to use EIS for
prediction of state of charge. Viswanathan et al. studied
the impedance components of a Ni—Cd [8] and a lead—acid
battery [9]. They aso fitted the impedance data to a
modified Randels circuit. They found some of the
impedance components monotonically increasing or de-
creasing as a function of SoC. For the Ni—Cd battery these
components where found in the low frequency range.
Sathyanarayana et al. [10] concluded that only a restricted
number of impedance parameters, in the low frequency
region, varied in a way useful for determination of SoC in
a Ni—Cd battery.

As an alternative to EIS methods other perturbation
signals have been used. Andrieu and Poignant [11] devel-
oped a fast method for determination of SoC. Instead of a
sinusoidal signal, they used a pulse technique to determine
the admittance, the inverse of the impedance. With this
method, they could determine SoC for a single cell with an
accuracy better than 15% over the entire range of SoC.
Ilangovan and Sathyanarayana [12] proposed a galvanos-
tatic alternative to the EIS procedure. The cell were dis-
charged at a very low load for a few tens of seconds, and
the voltage response was studied. It was possible to deter-
mine the parameters of an equivalent circuit from the
voltage transient. These parameters were determined for a
lead—acid battery though not as a function of SoC. Xiong
et al. [13] used a similar method with a new procedure for
caculation to simplify the evaluation. The method was
applied to a Ni—Cd battery and was claimed to be superior
at equilibrium conditions compared to an EIS-method. The
evaluation of SoC for batteries under load was aso studied

but it was claimed that the complexity of the analysis
restricted many of the used methods to laboratory research.

The problems, so far encountered, have been to find a
usable parameter for determining SoC and a versatile
method applicable at varying conditions, e.g., at an applied
load. In this work, a multivariate approach, partial least
square (PLS) regression, is proposed. The method is not
restricted to the finding of a single parameter but uses a set
of parameters built up internally in the PLS-regression
model. The PLS-regression method has previously been
used with success in interpreting the result from optical
spectroscopy, e.g., for determination of nitrate in munici-
pal waste water by UV-spectroscopy [14] and characterisa
tion of chemical and physical descriptors of pulp using
near-infrared spectrometry [15]. Multivariate methods have
also been used for other purposes, in the context of battery
research, e.g., for life-time and performance prediction of
both Ni—Cd [16] and the lead—acid battery [17-19]. A
PL S-pattern recognition method has also been used in the
design of new metal-hydrides for use in the NiMH batter-
ies [20].

PLS-regression is a method used to construct predictive
models that relate some independent measurement, X, to a
known response, Y. In this case, X represents the
impedance data and Y represents state of charge values.
Both the matrices X and Y can easily be extended, for
example temperature and potential could be included in X.
The method does not require a priori knowledge of the
investigated system, but generates a model based entirely
on the received data. Thus, the model is only valid within
the experimental domain for which it was constructed.
Using the model to predict data outside the experimental
domain of reference measurements, i.e., extrapolation, is
uncertain and should be avoided. The model gives no
chemical information about the system, yet it is possible to
use multivariate methods to achieve chemical information.
This is a much more complicated process and requires
more fundamental knowledge about the system.

The objective function of the method is to maximise the
covariance between X and Y. This is done by utilising a
new set of variables, the so-called PLS components. Infor-
mation from all the original variablesis projected down to
a lower dimensional orthogonal space made up of the PLS
components. A linear combination of these components
makes up the model. The coordinates of the objects (one
impedance spectrum is one object), in the space defined by
the model, are called scores. Studying the score values can
reveal trends and groups among the objects. The relation-
ship between the original variables (single frequencies)
and PLS components is captured by the loadings. A high
loading value for an origina variable means that this
variable has a strong influence on that particular dimension
of the model. The determination of the number of PLS
components to be used in the model is a crucia step.
Using to few components will leave out relevant informa-
tion, while using too many will incorporate noise in the
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model. Both these cases will impair the predictive capabil-
ity of the model. The PLS regression method is extensively
described in the literature, for instance by Martens and
Nass [21] or Geladi and Kowalski [22].

2. Experimental

The measurements were run on a standard NiMH-cell
with a nominal capacity of 2400 mAh (Varta VH2100). A
nickel sheet was spot-welded to each of the terminals and
two contacts were in turn soldered to the two nickel sheets.
A Solartron 1287 electrochemical interface was used as
galvanostat during all the experiments and was coupled to
a Solartron 1255 Frequency Response Analyser for electro-
chemical impedance measurements. The instrument was
controlled by the Corrware®- and ZplotW ®-software on a
PC. The cell was activated by cycling at 0.2 C, based on
the nominal capacity, before the experiments. The cell was
charged for 5 h and discharged to a cell voltage of 0.9 V.
Impedance spectra were sampled at different states of
charge, both at open circuit and at different discharge loads
in the range of 0.2 C and 0.8 C. The discharge load was
then held constant during each experiment. Between all
experiments the cell was cycled once at 0.2 C to return it
to its initial state. The impedance measurements were
performed in galvanostatic mode and an alternating current
signal with an amplitude of 100 mA was used. The
frequency ranged between 600 Hz and 60 mHz, with five
steps per decade. In the data analysis, a narrower range
was used (see Section 3.1).

Open circuit experiments were conducted in the follow-
ing way. The cell was charged with 0.2 C for 5 h and
allowed to rest for 2 h. Impedance measurements were run
at different SoC, stepped with approximately 10%, using a
discharge load of 0.2 C, until the cell voltage reached 0.9
V. Before each impedance measurement, the cell was
allowed to rest for 2 h. At the experiments during dis-
charge, the cell was charged in the same way as for the
OCP measurement. It was then discharged at constant load
until it reached the SoC in question where the AC-signa
was imposed on the DC discharge load, and an impedance
measurement was conducted. The impedance was mea-
sured with steps of 10% in SoC at loads less than 0.4 C
and with steps of 20% at loads greater than 0.4 C.

3. Treatment of data
3.1. Initial treatment of raw data

The impedance gets increasingly more scattered at low
frequencies when the current is high. This comes about
because the actual change of SoC during a measurement
becomes important and because the analysis time on each
frequency is short. At 0.8 C, the total change in SoC is
4.7% during an impedance measurement, whereas the
change at 0.2 Cisonly 1.3%. The change in SoC, during a

measurement, becomes more pronounced the lower the
frequencies used. The applicability of the impedance
method for fast evaluations is also impaired when using
such time consuming, low frequencies. For these two
reasons, the low frequency limit of data analysed, was set
to 0.6 Hz. At the highest frequencies, impedance spectra
showed an inductive behaviour which is believed to be
caused by limitations in the experimental equipment. The
upper limit of frequency was therefore set to 239 Hz. In
some of the impedance spectra, one could also see some
rejected data at some frequencies. This is not suitable
when PLS regression is used for the analysis. Most of the
missing values were due to failing of auto-integration, of
the impedance, done by the FRA-unit. Some of the
impedance values, returned by the FRA-unit, were still
reasonable but it was decided that none of those were to be
used. Instead, if no more than two subsequent values were
missing, values were estimated using linear interpolation.
If there were more than two subsequent values missing, the
whole object (impedance spectrum) was omitted. The SoC
at each impedance measurement was determined after each
experiment, calculated from the total time of discharge at
each discharge rate. It was chosen as the SoC when the
sampling of the impedance was started. The omission of
the low freguencies, reduced the change in SoC during one
measurement to 1-2% at the highest discharge rates.

3.2. Treatment of data for PLS analysis

The experimental impedance data has been represented
as complex numbers with a real and an imaginary part.
Further analysis also showed that the influence on the PLS
regression model was not equal for the real and imaginary
part. The PLS regression method renders a large amount of
freedom in preparing data for analysis. The predictive
performance was enhanced by centring the data. The data
was centred at each frequency by subtracting the average
impedance at that frequency from the corresponding
impedance values. In construction of the model it is also
advantageous to try to avoid non-linearities in the depen-
dence of the response, Y, on the independent variable, X.
This can be achieved by pretreating X or Y with some
suitable function. A number of functions were tried; f?,
1/f, 1/yf, 1/(£2), efi, In(f). These where used for
modification of both the impedance data and the SoC
values. None of these functions improved the performance
of the model.

4. Results and discussion
4.1. General behaviour of the cell

The discharge behaviour at different discharge rates is
shown in Fig. 1. From the discharge at 0.2 C, the tota
capacity was determined to 2200 mAh. While following all
the reconditioning cycles, during the series of experiments,
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Fig. 1. The potential change of the cell at different discharge loads.
Curves. (@ 0.2 C, (b) 04 C, (c) 0.8 C (d) open-circuit experiment.
Included in the picture is also an example of the potential relaxation
preceding measurement at open-circuit.

the total capacity increased less than 2%. The discrepancy
between the determined value and the nominal capacity
arises partly from a reduced charging efficiency at the end
of the charging. The charge supplied was 2400 mAh.
Potential change at discharge during an ‘ open circuit mea
surement’ is also shown in Fig. 1. An example of the
potential change at open circuit, preceding the impedance
measurement, is blown-up in Fig. 1. The determined ca-
pacity for an uninterrupted discharge at 0.2 C, and for the
discharge during an OCP-measurement, differs about 3%,
and can be attributed to random differences and, to some
extent, to self-discharge. The OCP experiment, which in-
cludes the open circuit periods preceding each impedance
measurement, takes about 24 h to complete. This is as
opposed to an ordinary uninterrupted discharge completed
in less than 5 h.

4.2. Impedance dependence upon SoC and discharge load

Figs. 2-5 are shown in the frequency range 239-0.6
Hz. Fig. 2 shows the impedance response for different
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Fig. 2. Complex plane plot of the impedance, measured during discharge
at 0.2 C, for different state of charge. The frequency range is 239-0.6 Hz.
Curves: (a) 100%, (b) 77.9%, (c) 55.9%, (d) 33.6%, (e) 11.0%, (f) 0%.
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Fig. 3. The real part of the impedance, measured during discharge at 0.2

C, for different state of charge. The frequency range is 239-0.6 Hz.
Curves: (a) 100%, (b) 77.9%, (c) 55.9%, (d) 33.6%, (e) 11.0%, (f) 0%.

SoC's from an experiment at a constant discharge load of
0.2 C, in a complex plane plot. Evidently, there are
differences depending on the SoC. This dependence be-
comes even more evident, when looking only at the real
part of the impedance, as seen in Fig. 3. The read part is
seen to decrease, with increasing SoC, except at 100%,
where the impedance is somewhat increased again. As the
SoC approaches 0%, the real part is markedly increased
especially at low frequencies. The dependence of
impedance on discharge load is shown in Figs. 4 and 5,
respectively, in the complex plane and as rea part vs.
frequency. The spectra were collected at SoC's ranging
between 87.2 and 90.1%. There are significant differences
seen, depending on the load, but no clear-cut relationship.
It is interesting to see that the variations in the real part of
the impedance, for different loads at 90% SoC (Fig. 5) is
as big as the variations between 30-100% SoC at a
constant load of 0.2 C (Fig. 3). This fact implies that a
statistical method would be beneficial when predicting
SoC at different discharge loads.
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Fig. 4. Complex plane plot of the impedance, measured at open circuit
(OCP) and at different discharge loads. The state of charge is approxi-
mately 90% and the frequency range is 239-0.6 Hz. Curves. (a) ocp, (b)
02C,(003C.(d04C, (e 08C.
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and at different discharge loads. The state of charge is approximately
90% and the frequency range is 239-0.6 Hz. Curves: (&) ocp, (b) 0.2 C,
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4.3. Multivariate analysis

To start with, it is to be emphasised that in the follow-
ing predictions of SoC no information about cell voltage or
discharge load has been used in constructing the multivari-
ate model. In many cases knowledge of current load and
potential for a constant current discharge, especially at
laboratory conditions, would by itself be information
enough to determine SoC. However in redity, this ap-
proach is difficult to adapt due to the flatness of the
discharge curve (Fig. 1), and to the fact that the potential is
not only dependent on SoC, but also on the previous
history. Since the object of this work was to test the
multivariate method on electrochemical impedance data,
the only used information is the impedance spectra. If a
discharge with fluctuating load was to be employed, e.g.,
for smulating electric vehicles, information about cell
potential probably would improve the prediction of SoC.
The experimental domain providing the basis of the PLS
model is shown in Fig. 6.

The success of the PLS regression method depends on
its ability to predict the SoC from an impedance spectrum.
This ability is tested by a so-called cross-prediction proce-
dure in the following way. A single object is removed and
SoC, corresponding to that object, is predicted using a
model constructed by the remaining objects. The object is
removed to ensure that the predicted value itself does not
influence the prediction. This procedure is then repeated
for each of the objects in the experimental domain. The
result from the cross-prediction is compiled in Fig. 7. The
root mean square error, RMSEP, between measured and
predicted values shows that the model predicts the SoC of
the cell, independent of SoC and discharge load, with an
average error of 11%. The solid line is a 45 degree line,
which is the ideal result (the predicted value equalling the
measured), and the dashed line is the linear regression line
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Fig. 6. The experimental domain used for construction of the PLS-regres-
sion model. Each point corresponds to one impedance measurement.

fitted to the cross-predicted data with a correlation coeffi-
cient of 0.85.

In Fig. 7, one can also see some values obviously less
accurately predicted than the others. This is especially so
for nos. 17 and 40 where each number corresponds to one
point shown in the experimental domain (Fig. 6). A poorly
predicted value could indicate that the underlying dataset
in one way or another is different from the others. If thisis
the case the dataset is a so-called outlier. A good way to
determine whether or not an object really is an outlier is a
scoreplot (Fig. 8). In a scoreplot the score of each object
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Fig. 7. Cross-prediction for state of charge without any outliers removed
from the data. The dashed line is the linear regression line fitted to the
cross-predicted data, with a correlation coefficient r? of 0.85. The
root—mean square error between the predicted and measured values is
11.2%. Numbers indicated in the figure correspond to those indicated in
Fig. 6.
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Fig. 8. The scoresplot for PLS-component 2 vs. PLS-component 1.
Numbers indicated in the figure correspond to those indicated in Fig. 6.

for the different PLS-components are plotted against each
other. In Fig. 8, the scores of the first PLS-component are
plotted against the scores of the second. The scores reflect
the inherent properties of the model and contain informa-
tion about both impedance and SoC. As seen in Fig. 8, dll
the data are collected together, except nos. 17, 25, 40 and
47. All these are thus considered as outliers by the model.
Other similar plots also indicated nos. 41, 43 and 56. Since
the objective was to find a method that is easy to use, it
was decided that all outliers, indicated by the model, were
to be removed. Afterwards these outliers could be analysed
to find plausible reasons for their behaviour. The result
from the cross-prediction, with the seven outliers indicated
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Fig. 9. Cross-prediction for state of charge with the seven outliers
indicated by the analysis removed. The dashed line is the linear regres-
sion line fitted to the cross-predicted data, with a correlation coefficient
r? of 0.93. The root—mean square error between the predicted and
measured values is 6.8%. Numbers indicated in the figure correspond to
those indicated in Fig. 6.
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Fig. 10. The real part of the impedance, measured at 0.6 Hz, as a function
of state of charge for different discharge loads. Four outliers are indicated
(nos. 17, 25, 40, 47) in the picture together with a point not indicated as
an outlier (no. 51). Numbers indicated in the figure corresponds to those
indicated in Fig. 6. Curves: (@) 0.2 C, (b) 0.3 C, (c) 0.4 C, (d) 05 C, (&)
07 C.

by the model removed, is plotted in Fig. 9. The RMSEP
value was then decreased to less than 7%.

When a satisfactory result was obtained, the focus was
turned to the outliers. It was noted that four outliers, nos.
17, 25, 40 and 47, were al situated at the left edge of the
experimental domain (Fig. 6), corresponding to low SoC.
The rea part of the impedance for the discharge loads
corresponding to the above outliers, as a function of SoC,
was studied. This comparison is plotted in Fig. 10 where
each symbol represents a single point in the experimental
domain. The different outliers are indicated in the figure.
When looking at nos. 17, 25, 40 and 47, one sees that all
of them undergo a marked change in impedance compared
to the other points. The change in impedance in the last
10% of SoC is markedly larger, than the total variation in
impedance for the former 90%. Since the model is con-
structed by linear combinations, it is no wonder that such a
strong non-linear behaviour causes specia problems. Point
51, also situated at the left edge of the experimenta
domain, does not show this sharp increase in impedance,
and is not indicated as an outlier. The outliers 41, 43 and
56 could not be explained by a visua inspection. A
conclusion from studying the outliers is that prediction
problems, due to the non-linear behaviour in the end of the
discharge, can be expected. The problem might be reduced
by increasing the number of points in the non-linear area
of the experimental domain. Another possibility is to use
another model to determine SoC, e.g., lower than 10%. As
previously noted, the pretreatment of the data had no
obvious effect on this problem. It could be interesting to
see how a model applicable between 10% to 100% SoC,
would behave without any outliers removed. This case
approximately corresponds to removal of the four outliers
17, 25, 40 and 47 only, and thus a third model was
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constructed. The RMSEP of the prediction was reduced to
9%.

To further study the development of the model, the
prediction residuals, i.e., the difference between the pre-
dicted and measured values, were studied. Residuals for
the three models are plotted in Fig. 11. If the residuals are
random, i.e., normally distributed around zero, one can
assume that no more information can be extracted from the
data. As seen in Fig. 11, the residuals for the model
approach the normal distribution around zero as more
outliers are removed. The residual distribution for the
model with seven outliers removed led us to believe that
this was a satisfactory model.

The PLS regression model is built up by a linear
combination of PLS components. By plotting the so-called
loadings for each PLS component, one can get a picture of
the influence of each frequency for each PLS component.
These loadings are plotted for PLS component 1, 2 and 6
in Fig. 12. The relative influence of each frequency is
measured as the distance to the zero-level. One can see
that the low frequency region of impedance has a stronger
influence, although it can be seen for both PLS component
1 and PLS component 2, that the whole spectrum is used.
Loadings for PLS component 6, which is the last compo-
nent used, seems to be more randomly distributed among
the frequencies. This is an indication that further addition
of PLS components would only describe a randomised
behaviour.

The aim of this work has been to present a new method
showing how PLS-regression coupled to EIS can be used
for prediction of SoC being aware that further work re-
mains before practical use in, e.g., an electric vehicle. This
investigation is done under laboratory conditions and a
technical battery system will introduce a number of addi-
tional parameters such as age, prehistory and temperature
and quite often the additional difficulty of a system con-
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Fig. 11. The prediction residuals for three different models with different
number of removed outliers. Curves: (@) no outliers removed, (b) 4
outliers removed, (c) 7 outliers removed.
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sisting of a large number of cells. These factors will
further increase the complexity of the analysis.

The presented method is believed to have certain advan-
tages when considering the use in technical systems. The
method does not require the construction of an equivalent
circuit and is not directly impaired by the porous character
of the electrodes. The fitting of data, to an equivalent
circuit, before estimation of state of charge is not neces-
sary. Instead the calculation becomes a matrix multiplica-
tion once the model parameters are determined. This is
important since fitting procedures are often very tedious
whilst matrix multiplication is fast. The problem of param-
eters such as cycle life and temperature may be handled by
introducing them in the model and one can aso use the
cell voltage as a variable. Thisis done in a straightforward
way using the presented method but may be a problem
with other methods since it is not obvious how to include
these parameters. Any number or type of perturbation
signal can also be used in a model to increase the perfor-
mance. The incorporation of new experimental data into
the matrix of experimental data is easy which makes it
possible to calibrate and update the system. The PLS-re-
gression has also an outlier identification capability.
Thereby, it is possible to determine whether or not a
measurement is valid or not in perspective of the calibra-
tion data. The drawback of the PLS-regression method is
that it does not give any specific chemical information
about the battery and that predictions outside the experi-
mental domain of reference measurement are difficult.
This is handled by constructing a domain of calibration
measurements that include the normal use of the battery.

5. Conclusions

A multivariate method for predicting state of charge,
from electrochemical data, of a nickel-metal hydride
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(NiMH)-battery is presented. The impedance was mea-
sured for different states of charge at open-circuit condi-
tions and during continuous discharge. PL S-regression was
used to evaluate the electrochemical impedance spectra
and predict state of charge without a priori knowledge of
the electrochemical system.

The predictive capability of the method was tested by a
cross-validation procedure and the root mean sguare error
of prediction was as low as 7% when using the outlier
identification capability of the PLS-regression method.

The presented model works best in a range of state of
charge between 10—100% both at open-circuit and during
a constant current discharge.
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